jueves, 24 de abril de 2008

Clasificación de Enzimas

1. Oxidoreductasas
Catalizan reacciones de oxidorreducción. Tras la acción catálica quedan modificados en su grado de oxidación por lo que debe ser transformados antes de volver a actuar de nuevo.
Dehidrogenasas
Aminooxidasa
Deaminasas
Catalasas

2. Transferasas
Transfieren grupos activos (obtenidos de la ruptura de ciertas moléculas)a otras sustancias receptoras. Suelen actuar en procesos de interconversiones de azucares, de aminoácidos, etc
Transaldolasas
Transcetolasas
Transaminasas

3. Hidrolasas
Verifican reacciones de hidrólisis con la consiguiente obtención de monómeros a partir de polímeros. Suele ser de tipo digestivo, por lo que normalmente actúan en primer lugar
Glucosidasas
Lipasas
Peptidasas
Esterasas
Fosfatasas

4. Isomerasas
Actúan sobre determinadas moléculas obteniendo de ellas sus isómeros de función o de posición. Suelen actuar en procesos de interconversion
Isomerasas de azúcar
Epimerasas
Mutasas

5. Liasas
Realizan la degradación o síntesis (entonces se llaman sintetasas) de los enlaces denominados fuertes sin ir acoplados a sustancias de alto valor energético.
Aldolasas
Decarboxilasas

6. Ligasas
Realizan la degradación o síntesis de los enlaces fuertes mediante el acoplamiento a sustancias ricas en energía como los nucleosidos del ATP
Carboxilasas
Peptidosintetasas

Cinética Enzimática

La cinética enzimática estudia la velocidad de las reacciones químicas que son catalizadas por las enzimas. El estudio de la cinética de una enzima permite explicar los detalles de su mecanismo catalítico, su papel en el metabolismo, cómo es controlada su actividad en la célula y cómo puede ser inhibida su actividad por fármacos o venenos o potenciada por otro tipo de moléculas.
Las enzimas son proteínas (macromoléculas) con la capacidad de manipular otras moléculas, denominadas sustratos. Un sustrato es capaz de unirse al centro catalítico de la enzima que lo reconozca y transformarse en un producto a lo largo de una serie de pasos denominados mecanismo enzimático. Algunas enzimas pueden unir varios sustratos diferentes y/o liberar diversos productos, como es el caso de las proteasas al romper una proteína en dos polipéptidos. En otros casos, se produce la unión simultánea de dos sustratos, como en el caso de la ADN polimerasa, que es capaz de incorporar un nucleótido (sustrato 1) a una hebra de ADN (sustrato 2). Aunque todos estos mecanismos suelen seguir una compleja serie de pasos, también suelen presentar una etapa limitante que determina la velocidad final de toda la reacción. Esta etapa limitante puede consistir en una reacción química o en un cambio conformacional de la enzima o del sustrato.
El conocimiento adquirido acerca de la estructura de las enzimas ha sido de gran ayuda en la visualización e interpretación de los datos cinéticos. Por ejemplo, la estructura puede sugerir cómo permanecen unidos sustrato y producto durante la catálisis, qué cambios conformacionales ocurren durante la reacción, o incluso el papel en particular de determinados residuos aminoácidos en el mecanismo catalítico. Algunas enzimas modifican su conformación significativamente durante la reacción, en cuyo caso, puede ser crucial saber la estructura molecular de la enzima con y sin sustrato unido (se suelen usar análogos que se unen pero no permiten llevar a cabo la reacción y mantienen a la enzima permanentemente en la conformación de sustrato unido).
Los mecanismos enzimáticos pueden ser divididos en mecanismo de único sustrato o mecanismo de múltiples sustratos. Los estudios cinéticos llevados a cabo en enzimas que solo unen un sustrato, como la triosafosfato isomerasa, pretenden medir la afinidad con la que se une el sustrato y la velocidad con la que lo transforma en producto. Por otro lado, al estudiar una enzima que une varios sustratos, como la dihidrofolato reductasa, la cinética enzimática puede mostrar también el orden en el que se unen los sustratos y el orden en el que los productos son liberados.
Sin embargo, no todas las catálisis biológicas son llevadas a cabo por enzimas proteicas. Existen moléculas catalíticas basadas en el ARN, como las ribozimas y los ribosomas, esenciales para el splicing alternativo y la traducción del ARNm, respectivamente. La principal diferencia entre las ribozimas y las enzimas radica en el limitado número de reacciones que pueden llevar a cabo las primeras, aunque sus mecanismos de reacción y sus cinéticas pueden ser estudiadas y clasificadas por los mismos métodos.

Clase 5: ISOMERASAS

Catalizan la interconversion de isomeros:

A -->B
Son ejemplos la fosfotriosa isomerasa y la fosfoglucosa isomerasa, que catalizan las reacciones representadas en la tabla inferior:

Clase 4: LIASAS

Catalizan reacciones de ruptura o soldadura de sustratos:
A-B --->A + B
Un ejemplo es la acetacetato descarboxilasa, que cataliza la reacci�n:

Acido acetacatico--->CO2 + acetona

Clase 3: HIDROLASAS

Catalizan las reacciones de hidr�lisis:

A-B + H2 -->AH + B-OH

Un ejemplo es la lactasa, que cataliza la reacci�n:

lactosa + agua-->glucosa + galactosa

Clase 2: TRANSFERASAS.

Catalizan la transferencia de un grupo quimico (distinto del hidrogeno) de un sustrato a otro, segun la reaccion:
A-B + C
A + C-B
Un ejemplo es la glucoquinasa, que cataliza la reaccion representada en la Figura de la derecha:
glucosa + ATP
ADP + glucosa-6-fosfato

Clase 1: OXIDORREDUCTASAS

Catalizan reacciones de oxidorreduccion, es decir, transferencia de hidrogeno (H) o electrones (e-) de un sustrato a otro, segun la reaccion general:
AH2 + B
A + BH2
Ared + Box
Aox + Bred
Ejemplos son la succinato deshidrogenasa o la citocromo c oxidasa.

Clasificacion de Enzimas

Clase 1: OXIDORREDUCTASAS
Clase 2: TRANSFERASAS
Clase 3: HIDROLASAS
Clase 4: LIASAS
Clase 5: ISOMERASAS
Clase 6: LIGASAS

Enzimas

Enzimas: Enzimas las sustancias de naturaleza proteica que catalizan reacciones químicas.
En estas reacciones, las moléculas sobre las que actúa la enzima en el comienzo del proceso son llamadas sustratos, y estas los convierten en diferentes moléculas, los productos. Casi todos los procesos en las células necesitan enzimas para que ocurran en tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.
Como todos los catalizadores, las enzimas funcionan disminuyendo la energía de activación (ΔG‡) para una reacción, así se acelera substancialmente la tasa de la reacción. Las enzimas no alteran el balance energético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción, pero consiguen acelerar el proceso incluso millones de veces. Una reacción que se produce bajo el control de una enzima, o de un catalizador en general, alcanza el equilibrio mucho más deprisa que la correspondiente reacción no catalizada.

Al igual que ocurre con otros catalizadores, las enzimas no son consumidas por las reacciones que ellas catalizan, ni alteran su equilibrio químico. Sin embargo, las enzimas difieren de otros catalizadores por ser más específicas. Las enzimas catalizan alrededor de 4.000 reacciones bioquímicas distintas.No todas los catalizadores bioquímicos son proteínas, pues algunas moléculas de ARN son capaces de catalizar reacciones (como el fragmento 16S de los ribosomas en el que reside la actividad peptidil transferasa).

miércoles, 9 de abril de 2008

Ciclo de Krebs






El ciclo de Krebs (también llamado ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos) es una serie de reacciones químicas que forman parte de la respiración celular en todas las células aerobias, es decir que utilizan oxígeno. En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de hidratos de carbono, ácidos grasos y aminoácidos hasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).
El metabolismo oxidativo de glúcidos, grasas y proteínas frecuentemente se divide en tres etapas, de las cuales el ciclo de Krebs supone la segunda. En la primera etapa los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej. desaminación oxidativa), la beta oxidación de ácidos grasos y la glucolisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.
El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una vía anfibólica, es decir, catabólica y anabólica al mismo tiempo.






Las Proteínas
Las proteínas son las moléculas orgánicas más abundantes en las células; constituyen más de el 50 % de su peso seco.Cada proteína tiene funciones diferentes dentro de la célula. Además la mayor parte dela información genética transmitida por las proteínas.Las proteínas son verdaderas macromoléculas que alcanzan dimensiones de las micelas en el estado coloidal. La estructura de tamaño micelar con cargas eléctricas en su superficie les confiere propiedades de absorción.Las macromoléculas proteínicas en ocasiones están compuestas por una sola cadena polipeptídica; en tal caso reciben el nombre de monoméricas. Cuando la proteína esta formada por varias cadenas polipeptídicas que pueden o no ser idénticas entre sí, reciben el nombre de oligoméricas.Las proteínas son macromoléculas por lo cual poseen pesos moleculares elevados. Todas producen por hidrolisis µ -aminoácidos.Existen 20 µ -aminoácidos, como sillares para la formación de proteínas, enlazados por uniones cabeza-cola , llamadas : Enlace Polipeptídico.
Composición de las proteínasTodas las proteínas contienen :
Carbono
Hidrógeno
Nitrógeno
Oxígeno
Y otros elementos tales como :
Azufre
Hierro
Fósforo
Cinc
Clasificación de las proteínasLas proteínas pueden clasificarse, basándose en su :
Composición
Conformación
Según su composición, las proteínas se clasifican en :
Proteínas Simples : Son aquellas que por hidrolisis, producen solamente µ -aminoácidos.
Proteínas Conjugadas : Son aquellas que por hidrolisis, producen µ -amino-ácidos y además una serie de compuestos orgánicos e inorgánicos llamados : Grupo Prostético.
Las proteínas conjugadas pueden clasificarse de acuerdo a su grupo prostético :
Nucleoproteínas (Ac. Nucleíco)
Metaloproteínas (Metal)
Fosfoproteínas (Fosfato)
Glucoproteínas (Glucosa)

Según su conformación, las proteínas pueden clasificarse en :
Proteínas Fibrosas : Son aquellas que se hayan constituídas por cadenas polipeptídicas, ordenadas de modo paralelo a lo largo de un eje formando estructuras compactas ( fibras o láminas).
Son materiales físicamente resistentes e insolubles en agua y soluciones salinas diluídas. Ej : (colágeno, µ -queratina, elastina).
Proteínas Globulares : Están constituídas por cadenas polipeptídicas plegadas estrechamente, de modo que adoptan formas esféricas o globulares compactas.
Son solubles en sistemas acuosos, su función dentro de la célula es móvil y dinámica. Ej : (enzimas, anticuerpos, hormonas)Existen proteínas que se encuentra entre las fibrosas por sus largas estructuras y las globulares por su solubilidad en las soluciones salinas. Ej : (miosina,fibrinógeno).
Estructura de las proteínasEstructura Primaria : Es el esqueleto covalente de la cadena polipeptídica, y establece la secuencia de aminoácidos.Rige el orden de encadenamiento por medio del enlace polipeptídico.Estructura Secundaria : Ordenación regular y periódica de la cadena polopeptídica en el espacio.Rige el arreglo espacial de la cadena polipeptídica en el espacio.Arreglos : Hélice-a , Hélice-b , Hélice Colágeno.Estructura Terciaria : Forma en la cual la cadena polipeptídica se curva o se pliega para formar estructuras estrechamente plegadas y compactas como la de las proteínas globulares.Rige el arreglo tridimensional en el cual participan las atracciones intermoleculares. (Fuerzas de Van der Walls, Puentes de Hidrógeno, Puentes disulfuro, etc)Estructura Cuaternaria : Es el arreglo espacial de las subunidades de una proteínas, para conformar la estructura global.Es el acompañamiento paralelo de las cadenas polipeptídicas, responsable de las funciones de las proteínas.Estructuras Supramoleculares : En ocasiones las proteínas asociadas a otras moléculas se ensamblan formando estructuras más complejas denominadas supramoleculares y que ofrecen ventajas de una unidad funcional, teniendo en cuenta una complejidad intermedia entre la conformación cuaternaria de las proteínas oligoméricas por un lado y los lisosomas o las mitocondrias por otro.Es la orientación a la que se ven obligadas en el espacio para ejercer su carácter óptimo.
Desnaturalización de las proteínasLa desnaturalización de las proteínas implica modificaciones en la estructura de la proteína que traen como resultado una alteración o desaparición de sus funciones.Este fenómeno puede producirse por una diversidad de factores, ya sean físicos cómo : el calor, las radiaciones ultravioleta, las altas presiones; o químicos cómo : ácidos, bases, sustancias con actividad detergente.Este fenómeno genera la ruptura de los enlaces disulfuro y los puentes de hidrígeno, generando la exposición de estos.Cuando la proteína es desnaturalizada pierde sus funciones cómo : viscocidad, velocidad de difusión y la facilidad con que se cristalizan.La reversibilidad de la desnaturalización, depende que tan fuertes sean los agentes que desnaturalizaron la proteína. Todo depende de el grado de ruptura generado en los enlaces.
Funciones de las proteínas- Funciones Específicas : - Catálisis : Las enzimas catalizan diferentes reacciones.
La hexoquinasa cataliza la transferencia del grupo fosfato desde el ATP a la glucosa.- Almacenamiento de aminoácidos, cómo elementos nutritivos :
Ovoalbúmina, Caseína, Glidina.- Transporte de moléculas específicas : Seroalbúmina, Lipoproteínas, Hemogloibina.- Protección : Los anticuerpos protegen el organismo de agentes extraños que puedan dañarlo.- Estructuración : Forman la masa principal de los tejidos.- Funciones no Específicas (por ser generales) :
Amortiguadora
Energética
Oncótica
Funciones Hereditarias
Hidrólisis de las proteínasLa hidrolisis de las proteínas termina por fragmentarlas en a -aminoácidos. Existen 3 tipos de hidrolisis :
Hidrolisis ácida : Se basa en la ebullición prolongada de la proteína con soluciones ácida fuertes (HCl y H2SO4). Este método destruye completamente el triptófano y parte de la serina y la treonina.
Hidrolisis básica : Respeta los aminoácidos que se destruyen por la hidrolisis anterior, pero con gran facilidad, forma racematos. Normalmente se utiliza (NaOH e BaOH).
Hidrolisis enzimática : Se utilizan enzimas proteolíticas cuya actividad es lenta y a menudo incompleta, sin embargo no se produce racemización y no se destruyen los aminoácidos; por lo tanto es muy específica.




Los aminoácidos se caracterizan por poseer un grupo carboxilo (-COOH) y un grupo amino (-NH2).


Los aminoácidos son las unidades elementales constitutivas de las moléculas denominadas Proteínas. Son pues, y en un muy elemental símil, los "ladrillos" con los cuales el organismo reconstituye permanentemente sus proteínas específicas consumidas por la sola acción de vivir. Los alimentos que ingerimos nos proveen proteínas. Pero tales proteínas no se absorben normalmente en tal constitución sino que, luego de su desdoblamiento ("hidrólisis" o rotura), causado por el proceso de digestión, atraviesan la pared intestinal en forma de aminoácidos y cadenas cortas de péptidos. Esas sustancias se incorporan inicialmente al torrente sanguíneo y, desde allí, son distribuidas hacia los tejidos que las necesitan para formar las proteínas, consumidas durante el ciclo vital.
Se sabe que de los 20 aminoácidos proteicos conocidos, 8 resultan indispensables (o esenciales) para la vida humana y 2 resultan "semiindispensables". Son estos 10 aminoácidos los que requieren ser incorporados al organismo en su cotidiana alimentación y, con más razón, en los momentos en que el organismo más los necesita: en la disfunción o enfermedad. Los aminoácidos esenciales más problemáticos son el triptófano, la lisina y la metionina. Es típica su carencia en poblaciones en las que los cereales o los tubérculos constituyen la base de la alimentación. Los déficit de aminoácidos esenciales afectan mucho más a los niños que a los adultos.
Hay que destacar que, si falta uno solo de ellos (aminoácido esenciales) no será posible sintetizar ninguna de las proteínas en la que sea requerido dicho aminoácido. Esto puede dar lugar a diferentes tipos de desnutrición, según cual sea el aminoácido limitante.
Pulsando aquí puedes ver una detallada lista de Aminoácidos (esenciales y no esenciales) y función de cada una de ellos:
En esta imagen puede verse la fórmula de los 20 aminoácidos más importantes , en color negro la parte común, mientras que en color azul puede verse la parte variable, que da a los aminoácidos distinto comportamiento.

Los péptidos y el enlace peptídico.
Los péptidos están formados por la unión de aminoácidos mediante un enlace peptídico. Es un enlace covalente que se establece entre el grupo carboxilo de un aminoácido y el grupo amino del siguiente, dando lugar al desprendimiento de una molécula de agua.

Así pues, para formar péptidos los aminoácidos se van enlazando entre sí formando cadenas de longitud y secuencia variable. Para denominar a estas cadenas se utilizan prefijos convencionales como:

Oligopéptidos.- si el n º de aminoácidos es menor de 10.
Dipéptidos.- si el n º de aminoácidos es 2.
Tripéptidos.- si el n º de aminoácidos es 3.
Tetrapéptidos.- si el n º de aminoácidos es 4.
etc...
Polipéptidos o cadenas polipeptídicas.- si el n º de aminoácidos es mayor de 10.
Cada péptido o polipéptido se suele escribir, convencionalmente, de izquierda a derecha, empezando por el extremo N-terminal que posee un grupo amino libre y finalizando por el extremo C-terminal en el que se encuentra un grupo carboxilo libre, de tal manera que el eje o esqueleto del péptido, formado por una unidad de seis átomos (-NH-CH-CO-), es idéntico a todos ellos. Lo que varía de unos péptidos a otros, y por extensión, de unas proteínas a otras, es el número, la naturaleza y el orden o secuencia de sus aminoácidos.
Si la hidrólisis de una proteína produce únicamente aminoácidos, la proteína se denomina simple. Si, en cambio, produce otros compuestos orgánicos o inorgánicos, denominados grupo prostético, la proteína se llama conjugada.
ESTRUCTURA DE LAS PROTEÍNAS
La organización de una proteína viene definida por cuatro niveles estructurales denominados: estructura primaria, estructura secundaria, estructura terciaria y estructura cuaternaria. Cada una de estas estructuras informa de la disposición de la anterior en el espacio.
Estructura primaria
La estructura primaria es la secuencia de aminoácidos de la proteína. Nos indica qué aminoácidos componen la cadena polipeptídica y el orden en que dichos aminoácidos se encuentran. La función de una proteína depende de su secuencia y de la forma que ésta adopte.


Estructura Secundaria.
La estructura secundaria es la disposición de la secuencia de aminoácidos en el espacio. Los aminoácidos, a medida que van siendo enlazados durante la síntesis de proteínas y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable, la estructura secundaria.
Existen dos tipos de estructura secundaria:
La a(alfa)-hélice
La conformación beta

esta estructura se forma al enrollarse helicoidalmente sobre sí misma la estructura primaria. Se debe a la formación de enlaces de hidrógeno entre el -C=O de un aminoácido y el -NH- del cuarto aminoácido que le sigue.


Estructura terciaria
La estructura terciaria informa sobre la disposición de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular.
En definitiva, es la estructura primaria la que determina cuál será la secundaria y por tanto la terciaria..
Esta conformación globular facilita la solubilidad en agua y así realizar funciones de transporte , enzimáticas , hormonales, etc.
Esta conformación globular se mantiene estable gracias a la existencia de enlaces entre los radicales R de los aminoácidos. Aparecen varios tipos de enlaces:
el puente disulfuro entre los radicales de aminoácidos que tiene azufre.
los puentes de hidrógeno.
los puentes eléctricos.
las interacciones hifrófobas.
Estructura Cuaternaria
Esta estructura informa de la unión , mediante enlaces débiles ( no covalentes) de varias cadenas polipeptídicas con estructura terciaria, para formar un complejo proteico. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero.




Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, aunque las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).




Características generales
Los lípidos son biomoléculas muy diversas; unos están formados por cadenas alifáticas saturadas o insaturadas, en general lineales, pero algunos tienen anillos (aromáticos). Algunos son flexibles, mientras que otros son rígidos o semiflexibles hasta alcanzar casi una total flexibilidad molecular; algunos comparten carbonos libres y otros forman puentes de hidrógeno.
La mayoría de los lípidos tiene algún tipo de carácter polar, además de poseer una gran parte apolar o hidrofóbico ("que le teme al agua" o "rechaza al agua"), lo que significa que no interactúa bien con solventes polares como el agua. Otra parte de su estructura es polar o hidrofílica ("que ama el agua" o "que tiene afinidad por el agua") y tenderá a asociarse con solventes polares como el agua. Esto los hace moléculas anfipáticas (que tienen porciones hidrofóbicas e hidrofílicas). En el caso del colesterol, el grupo polar es sólo un –OH (hidroxilo o alcohol). En el caso de los fosfolípidos, los grupos polares son considerablemente más largos y más polares.




Clasificación biológica
Los lípidos son un grupo muy heterogéneo que usualmente se clasifican en dos grupos, atendiendo a que posean en su composición ácidos grasos (lípidos saponificables) o no lo posean (lípidos insaponificables).
Lípidos saponificables
Simples. Lípidos que sólo contienen carbono, hidrógeno y oxígeno.
Acilglicéridos. Cuando son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites.
Céridos (ceras)
Complejos. Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.
Fosfolípidos
Fosfoglicéridos
Fosfoesfingolípidos
Glucolípidos
Cerebrósidos
Gangliósidos
Lípidos insaponificables
Terpenoides
Esteroides
Eicosanoides




Lípidos saponificables


Ácidos grasos
Artículo principal: Ácido graso

Estructura 3D del ácido linoleico, un tipo de ácido graso. En rojo se observa la cabeza polar correspondiente a un grupo carboxilo.
Son las unidades básicas de los lípidos saponificables, y consisten en moléculas formadas por una larga cadena hidrocarbonada con un número par de átomos de carbono (12-22) y un grupo carboxilo terminal. La presencia de dobles enlaces en el ácido graso reduce el punto de fusión. Los ácidos grasos se dividen en saturados e insaturados.
Saturados (ácidos láurico, mirístico, palmítico, esteárico, araquídico y lignogérico).
Insaturados (ácidos palmitoleico, oleico, linoleico, linolénico y araquidónico).
Los denominados ácidos grasos esenciales no pueden ser sintetizados por el organismo humano y son el ácido linoleico, el ácido linolénico y el ácido araquidónico, que deben ingerirse en la dieta.

Propiedades físicoquímicas




Carácter Anfipático. Ya que el ácido graso esta formado por un grupo carboxilo y una cadena hidrocarbonada, esta última es la que posee la característica hidrófoba; siendo responsable de su insolubilidad en agua.
Punto de fusión: Depende de la longitud de la cadena y de su número de insaturaciones, siendo los ácidos grasos insaturados los que requieren menor energía para fundirse.
Esterificación. Los ácidos grasos pueden formar ésteres con grupos alcohol de otras moléculas
Saponificación. Por hidrólisis alcalina los ésteres formados anteriormente dan lugar a jabones (sal del ácido graso)
Autooxidación. Los ácidos grasos insaturados pueden oxidarse espontáneamente, dando como resultado aldehídos donde existían los dobles enlaces covalentes.

Acilglicéridos

Representación tridimensional de un triglicérido
Artículo principal: Acilglicérido
Los acilglicéridos son ésteres de ácidos grasos con glicerol (glicerina), formados mediante una reacción de condensación llamada esterificación. Una molécula de glicerol puede reaccionar con hasta tres moléculas de ácidos grasos, puesto que tiene tres grupos hidroxilo.
Según el número de ácidos grasos que se unan a la molécula de glicerina, existen tres tipos de acilgliceroles:
Monoglicéridos. Sólo existe un ácido graso unido a la molécula de glicerina.
Diacilglicéridos. La molécula de glicerina se une a dos ácidos grasos.
Triacilglicéridos. Llamados comúnmente triglicéridos, puesto que la glicerina está unida a tres ácidos grasos; son los más importantes y extendidos de los tres.
Los triglicéridos constituyen la principal reserva energética de los animales, en los que constituyen las grasas; en los vegetales constituyen los aceites. El exceso de lípidos es almacenado en grandes depósitos en el tejido adiposo de los animales.

Céridos
Artículo principal: Cérido
Las ceras son moléculas que se obtienen por esterificación de un ácido graso con un alcohol monovalente lineal de cadena larga. Por ejemplo la cera de abeja. Son sustancias altamente insolubles en medios acuosos y a temperatura ambiente se presentan sólidas y duras. En los animales las podemos encontrar en la superficie del cuerpo, piel, plumas, cutícula, etc. En los vegetales, las ceras recubren en la epidermis de frutos, tallos, junto con la cutícula o la suberina, que evitan la pérdida de agua por evaporación.

Fosfolípidos
Artículo principal: Fosfolípido
Los fosfolípidos se caracterizan por poseer un grupo fosfato que les otorga una marcada polaridad. Se clasifican en dos grupos, según posean glicerol o esfingosina.

Fosfoglicéridos


Estructura de un fosfoglicérido; X representa el alcohol o aminoalcohol que se esterifica con el grupo fosfato; el resto representa el ácido fosfatídico
Artículo principal: Fosfoglicérido
Los fosfoglicéridos están compuestos por ácido fosfatídico, una molécula compleja compuesta por glicerol, al que se unen dos ácidos grasos (uno saturado y otro insaturado) y un grupo fosfato; el grupo fosfato posee un alcohol o un aminoalcohol, y el conjunto posee una marcada polaridad y forma lo que se denomina la "cabeza" polar del fosfoglicérido; los dos ácidos grasos forman las dos "colas" hidrófobas; por tanto, los fosfoglicéridos son moléculas con un fuerte carácter anfipático que les permite formar bicapas, que son la arquitectura básica de todas las membranas biológicas.
Los principales alcoholes y aminoalcoholes de los fosfoglicéridos que se encuentran en las membranas biológicas son la colina (para formar la fosfatidicolina o lecitina), la etanolamina (fosfatidiletanolamina o cefalina), serina (fosfatidilserina) y el inositol (fosfatidilinositol).

Fosfoesfingolípidos

Imagen en 3D de la molécula de la esfingosina
Artículo principal: Esfingolípido
Los fosfoesfingolípidos son esfingolípidos con un grupo fosfato, tienen una arquitectura molecular y unas propiedades similares a los fosfoglicéridos. No obstante, no contienen glicerol, sino esfingosina, un aminoalcohol de cadena larga al que se unen un ácido graso, conjunto conocido con el nombre de ceramida; a dicho conjunto se le une un grupo fosfato y a éste un aminoalcohol; el más abundante es la esfingomielina, en la que el ácido graso es el ácido lignocérico y el aminoalcohol la colina; es el componente principal de la vaina de mielina que recubre los axones de las neuronas.

Glucolípidos
Artículo principal: Glucolípido
Los glucolípidos son esfingolípidos formados por una ceramida (esfingosina + ácido graso) unida a un glúcido, careciendo, por tanto, de grupo fosfato. Al igual que los fosfoesfingolípidos poseen ceramida, pero a diferencia de ellos, no tienen fosfato ni alcohol. Se hallan en las bicapas lipídicas de todas las membranas celulares, y son especialmente abundantes en el tejido nervioso; el nombre de los dos tipos principales de glucolípidos alude a este hecho:
Cerebrósidos. Son glucolípidos en los que la ceramida se une un monosacárido (glucosa o galactosa) o a un oligosacárido.
Gangliósidos. Son glucolípidos en los que la ceramida se une a un oligosacárido complejo en el que siempre hay ácido siálico.
Los glucolípidos se localizan en la cara externa de la bicapa de las membranas celulares donde actúan de receptores.

Lípidos insaponificables

Terpenoides


Artículo principal: Terpenoide
Los terpenoides, terpenos o isoprenoides, son lípidos derivados del hidrocarburo isopreno (o 2-metil-1,3-butadieno). Los isoprenoides biológicos constan, como mínimo de dos, moléculas de isopreno. Algunos terpenoides importantes son los aceites esenciales (mentol, limoneno, geraniol), el fitol (que forma parte de la molécula de clorofila), las vitaminas A, K y E, los carotenoides (qu son pigmentos fotosintéticos) y el caucho (que se obtiene del árbol Hevea brasiliensis).

Esteroides
Colesterol; los 4 anillos son el núcleo de esterano, común a todos los esteroides
Artículo principal: Esteroide
Los esteroides son derivados del núcleo del ciclopentanoperhidrofenantreno o esterano, esto es, se componen de cuatro anillos fusionados de carbono que posee diversos grupos funcionales (carbonilo, hidroxilo) por lo que la molécula tienen partes hidrofílicas e hidrofóbicas (carácter anfipático).
Entre los esteroides más destacados se encuantran los ácidos biliares, las hormonas sexuales, las corticosteroides, la vitamina D y el colesterol. El colesterol es el precursor de numerosos esteroides y es un componente más de la bicapa de las membranas celulares.

Eicosanoides
Artículo principal: Eicosanoide
Los eicosanoides o icosanoides son un grupo de moléculas de constitución lipídica derivadas de los ácidos grasos esenciales de 20 carbonos tipo omega-3 y omega-6. Los principales precursores de los eicosanoides son el ácido araquidónico, el ácido linoleico y el ácido linolénico. Todos los eicosanoides son moléculas de 20 átomos de carbono y pueden clasificarse en tres tipos: prostaglandinas, tromboxanos y leucotrienos.
Cumplen amplias funciones como mediadores para el sistema nervioso central, los procesos de la inflamación y de la respuesta inmune tanto de vertebrados como invertebrados. Constituyen las moléculas involucradas en las redes de comunicación celular más complejas del organismo animal, incluyendo el hombre.

Funciones de los lípidos


Los lípidos desempeñan diferentes tipos de funciones biológicas:
Función de reserva energética. Los triglicéridos son la principal reserva de energía de los animales ya que un gramo de grasa produce 9,4 kilocalorías en las reacciones metabólicas de oxidación, mientras que las proteínas y los glúcidos sólo producen 4,1 kilocalorías por gramo.
Función estructural. Los fosfolípidos, los glucolípidos y el colesterol forman las bicapas lipídicas de las membranas celulares. Los triglicéridos del tejido adiposo recubren y proporcionan consistencia a los órganos y protegen mecánicamente estructuras o son aislantes térmicos.
Función reguladora, hormonal o de comunicación celular. Las vitaminas liposolubles son de naturaleza lipídica (terpenoides, esteroides); las hormonas esteroides regulan el metabolismo y las funciones de reproducción; los glucolípidos actúan como receptores de membrana; los eicosanoides poseen un papel destacado en la comunicación celular, inflamación, respuesta inmune, etc.
Función relajante. Los lípidos se acumulan en el tejido adiposo formando grandes tejidos grasosos que se manifiestan en aumento de peso en caso de sedentarismo, lo que aumenta la concentración de la hormona TRL en sangre. En la neurohipófisis, esta elevada concentración de TRL estimula la hipófisis para que inhiba la secreción hormona ACTH provocando una sensación relajamiento general del cuerpo, según los últimos estudios de la Universidad de Cabo Soho.

HIDRATOS DE CARBONO


Los oligosacáridos


Los oligosacáridos son polímeros de monosacáridos con un número de unidades monoméricas entre 2 y 10. Los oligosacáridos más presentes en la naturaleza son la inulina, la oligofructosa (fructooligosacáridos) y los galactooligosacáridos.
La inulina y oligofructosa están formados por cadenas de fructosa que pueden terminar en glucosa o fructosa. Están presentes en muchos vegetales: achicoria, cebolla, puerro, ajo, plátano, alcachofa, etc.
Los galactooligosacáridos están formados por cadenas de galactosa y están presentes en la leche y en algunas plantas.
Los oligosacáridos forman parte de los glucolípidos y glucoproteínas que se encuentran en la superficie externa de la membrana plasmática y por lo tanto tienen una gran importancia en las funciones de reconocimiento celular.

Disacaridos


Los disacáridos o azúcares dobles son un tipo de hidratos de carbono, o carbohidratos, formados por la unión de dos monosacáridos iguales o distintos mediante enlace O-glucosídico, mono o dicarbonílico, que además puede ser α o β en función del -OH hemiacetal. Los disacáridos más comunes son:
Sacarosa: Formada por la unión de una glucosa y una fructosa. A la sacarosa se le llama también azúcar común.
Lactosa: Formada por la unión de una glucosa y una galactosa. Es el azúcar de la leche.
Maltosa, Isomaltosa, Trehalosa, Celobiosa: Formadas todas por la unión de dos glucosas, son diferentes dependiendo de la unión entre las glucosas.
La fórmula empírica de los disacáridos es C12H22O11. El enlace covalente entre dos monosacáridos provoca la eliminación de un átomo de hidrógeno de uno de los monosacáridos y de un grupo hidroxilo del otro monosacárido.
En la mucosa del tubo digestivo del hombre existen unas enzimas llamadas disacaridasas, que hidrolizan el enlace glucosídico que une a los dos monosacáridos, para su absorción intestinal

Monosacáridos


Monosacáridos
Artículo principal: Monosacárido
Los glúcidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacárido no modificado es (CH2O)n, donde n es cualquier número igual o mayor a tres. Los monosacáridos poseen siempre un grupo carbonilo en uno de sus átomos de carbono y grupos hidroxilo en el resto, por lo que pueden considerarse polialcoholes.
Los monosacáridos se clasifican de acuerdo a tres características diferentes: la posición del grupo carbonilo, el número de átomos de carbono que contiene y su quiralidad. Si el grupo carbonilo es un aldehido, el monosacárido es una aldosa; si el grupo carbonilo es una cetona, el monosacárido es una cetosa. Los monosacáridos más pequeños son los que poseen tres átomos de carbono, y son llamados triosas; aquéllos con cuatro son llamados tetrosas, lo que poseen cinco son llamados pentosas, seis son llamados hexosas y así sucesivamente. Los sistemas de clasificación son frecuentemente combinados; por ejemplo, la glucosa es una aldohexosa (un aldehido de seis átomos de carbono), la ribosa es una aldopentosa (un aldehido de cinco átomos de carbono) y la fructosa es una cetohexosa (una cetona de seis átomos de carbono).
Cada átomo de carbono posee un grupo de hidroxilo (-OH), con la excepción del primero y el último carbono, todos son asimétricos, haciéndolos centros estéricos con dos posibles configuraciones cada uno (el -H y -OH pueden estar a cualquier lado del átomo de carbono). Debido a esta asimetría, cada monosacárido posee un cierto número de isómeros. Por ejemplo la aldohexosa D-glucosa, tienen la fórmula (CH2O)6, de la cual, exceptuando dos de sus seis átomos de carbono, todos son centros quirales, haciendo que la D-glucosa sea uno de los estereoisómeros posibles. En el caso del gliceraldehido, una aldotriosa, existe un par de posibles esteroisómeros, los cuales son enantiómeros y epímeros (1,3-dihidroxiacetona, la cetosa correspondiente, es una molécula simétrica que no posee centros quirales). La designación D o L es realizada de acuerdo a la orientación del carbono asimétrico más alejados del grupo carbonilo: si el grupo hidroxilo está a la derecha de la molécula es un azúcar D, si está a la izquierda es un azúcar L. Como los D azúcares son los más comunes, usualmente la letra D es omitida.

Ciclación
El grupo aldehido o cetona en una cadena lineal abierta de un monosacárido reaccionará reversiblemente con el grupo hidroxilo sobre un átomo de carbono diferente en la misma molécula para formar un hemiacetal o hemicetal, formando un anillo heterocíclico, con un puente de oxígeno entre los dos átomos de carbono. Los anillos con cinco y seis átomos son llamados formas furanosa y piranosa respectivamente y existen en equilibrio con la cadena lineal abierta.
Durante la conversión de la forma lineal abierta a la forma cíclica, el átomo de carbono conteniendo el oxígeno carbonilo, llamado el carbono anomérico, se transforma en un centro quiral con dos posibles configuraciones: el átomo de oxígeno puede tomar una posición arriba o abajo del plano del anillo. El par de estereoisómeros resultantes son llamados anómeros. En el α-anómero, el -OH sustituyente sobre el carbono anomérico sin cuenta en el lado opuesto del anillo (posición trans) a la cadena CH2OH. La forma alternativa, en la cual el sustituyente CH2OH y el grupo hidroxilo sobre el carbono anomérico están en el mismo lado (posición cis) del plano del anillo, es llamado β-anómero. Como el anillo y la forma abierta se interconvierten, ambos anómeros existen en equilibrio.

Los carbohidratos,







Los glúcidos, mal denominados hidratos de carbono o carbohidratos, son una clase básica de compuestos químicos en bioquímica. Son la forma biológica primaria de almacenamiento o consumo de energía; otras formas son las grasas y las proteínas.
El término hidrato de carbono o carbohidrato es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino de átomos de carbono unidos a otros grupos funcionales químicos. Este nombre proviene de la nomenclatura química del siglo XIX, ya que las primeras sustancias aisladas respondían a la fórmula elemental Cn(H2O)n (donde "n" es un entero=1,2,3... según el número de átomos). De aquí el término "carbono-hidratado" se haya mantenido, si bien posteriormente se vio que otras moléculas con las mismas características químicas no se corresponden con esta fórmula.

Los carbohidratos, también llamados glúcidos, se pueden encontrar casi de manera exclusiva en alimentos de origen vegetal. Constituyen uno de los tres principales grupos químicos que forman la materia orgánica junto con las grasas y las proteínas. Los carbohidratos son los compuestos orgánicos más abundantes de la biosfera y a su vez los más diversos. Normalmente se los encuentra en las partes estructurales de los vegetales y también en los tejidos animales, como glucosa o glucógeno. Estos sirven como fuente de energía para todas las actividades celulares vitales.
Funciones
Las funciones que los glúcidos cumplen en el organismo son, energéticas, de ahorro de proteínas, regulan el metabolismo de las grasas y estructural.
-Energeticamente, los carbohidratos aportan 4 KCal (kilocalorías) por gramo de peso seco. Esto es, sin considerar el contenido de agua que pueda tener el alimento en el cual se encuentra el carbohidrato. Cubiertas las necesidades energéticas, una pequeña parte se almacena en el hígado y músculos como glucógeno (normalmente no más de 0,5% del peso del individuo), el resto se transforma en grasas y se acumula en el organismo como tejido adiposo. Se suele recomendar que minimamente se efectúe una ingesta diaria de 100 gramos de hidratos de carbono para mantener los procesos metabólicos.
-Ahorro de proteínas: Si el aporte de carbohidratos es insuficiente, se utilizarán las proteínas para fines energéticos, relegando su función plástica.
-Regulación del metabolismo de las grasas: En caso de ingestión deficiente de carbohidratos, las grasas se metabolizan anormalmente acumulándose en el organismo cuerpos cetónicos, que son productos intermedios de este metabolismo provocando así problemas (cetosis).
-Estructuralmente, los carbohidratos constituyen una porción pequeña del peso y estructura del organismo, pero de cualquier manera, no debe excluirse esta función de la lista, por mínimo que sea su indispensable aporte.

martes, 26 de febrero de 2008

Experimento No.3 Coca-colas estrelladas.

Experimento No.3 Coca-colas estrelladas.

Material:
-Coca-cola -Cubeta
-Coca-cola Light -Agua

Procedimiento:
1.-Se llena la cubeta a ¾ partes con agua.
2.-La coca-cola normal, se deja caer, con mucho cuidado, para así generar una degradación en la base de la coca-cola.
3.-Se colocan las dos latas en la cubeta.
4.-Se observa cual es la diferencia que se ejerció en estas dos latas.

Desarrollo / resultados
Cuando se dejaron caer ambas latas, la coca-cola con una tumoración es su base y la Light sin alteración alguna, se observa algo muy sorprendente es que las dos latas flotan a mismo nivel ya que la coca-cola con el golpe que se le dio genero mayor volumen lo que permitió que flotara un poco mas.

Experimento No.2 Coca-colas

Experimento No.2 Coca-colas

Materiales:
-Coca-cola -Cubeta
-Coca-cola Light -Agua

Procedimiento:

1.-Se llena la cubeta a ¾ partes con agua
2.-Se deja caer poco a poco una de las latas no importando el orden, posteriormente se deja caer la otra.
3.-Se observa cual es la diferencia de ambas.

Desarrollo / resultados.Cuando sostenemos las coca-colas, una en cada mano se va a dejar soltar, en la cubeta con agua, poco a poco para que no salpique el agua y se observa un efecto de densidad del agua ya que aunque usted no lo crea, una de las dos latas flota, sorprendentemente es la lata de coca-cola Light.

ExperimentoNo.1" Micéla"

Experimento No.1 Micéla

Material:
-Plato -Detergente liquido
-Agua -isopo
-Talco

Procedimiento:
1.-Colocar agua en el plato.
2.-Agregar el talco.
3.-Remojar el hisopo con detergente.
4.-Sumergir el isopo en el agua.

Desarrollo / resultadosR= Cuando se coloca el talco en el agua, este genera una capa en la parte superior del agua, con el hisopo ya remojado con el detergente, se debe de sumergir al agua y se observa un fenómeno previamente conocido como formación de micéla. El detergente como tiene partículas hidrófobas genera que

Ecuación de Henderson-Hasselbach






La ecuación de Henderson-Hasselbalch (frecuentemente mal escrito como Henderson-Hasselbach) se utiliza para calcular el pH de una solución buffer o tampón, a partir del pKa (la constante de disociación del ácido) y de las concentraciones de equilibrio del ácido o base, del ácido o la base conjugada.
En la última ecuación x puede ser a o b indistintamente